9 research outputs found

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    Get PDF
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented.Postprint (author's final draft

    NeXOS - Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management.

    No full text
    This report is Deliverable 8.2 in the NeXOS project. It describes the efforts made in validating the new sensors systems developed in NeXOS, namely three different types of optical sensors, two types of acoustic sensors, sensors for fisheries and the new anti-fouling system. Additionally, data availability and timeliness though the Sensor Web Enablement software/hardware features, developed by NeXOS, was validated. The validations took place on different observation platforms operated by the NeXOS Consortium, under realistic user scenarios, in real sea conditions over a limited time. Validation serves as the final step before the demonstrations in Work Package 9. The systems described herein, were functionally and scientifically validated in the sea, however, not necessarily, where the demonstrations will take place. All systems passed the scientific validation criteria used in the NeXOS project. The results are presented in a template format in order for make overview and reporting easier

    Ocean in-situ sensors: cross-cutting innovations. A new generation of interoperable oceanic passive acoustic sensors with embedded processing

    No full text
    Challenges and Innovations in Ocean In-Situ Sensors: Measuring Inner Ocean Processes and Health in the Digital Age highlights collaborations of industry and academia in identifying the key challenges and solutions related to ocean observations. A new generation of sensors is presented that addresses the need for higher reliability (e.g. against biofouling), better integration on platforms in terms of size and communication, and data flow across domains (in-situ, space, etc.). Several developments are showcased using a broad diversity of measuring techniques and technologies. Chapters address different sensors and approaches for measurements, including applications, quality monitoring and initiatives that will guide the need for monitoring.Peer ReviewedPostprint (published version

    Ocean in-situ sensors: cross-cutting innovations. A new generation of interoperable oceanic passive acoustic sensors with embedded processing

    No full text
    Challenges and Innovations in Ocean In-Situ Sensors: Measuring Inner Ocean Processes and Health in the Digital Age highlights collaborations of industry and academia in identifying the key challenges and solutions related to ocean observations. A new generation of sensors is presented that addresses the need for higher reliability (e.g. against biofouling), better integration on platforms in terms of size and communication, and data flow across domains (in-situ, space, etc.). Several developments are showcased using a broad diversity of measuring techniques and technologies. Chapters address different sensors and approaches for measurements, including applications, quality monitoring and initiatives that will guide the need for monitoring.Peer Reviewe

    An embedded passive acoustic device for realtime hydroacoustic surveys

    Get PDF
    In this paper, we provide a comprehensive description of cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management), which can be deployed both on fixed and mobile platforms. Within this context, we designed and developed two passive acoustic sensors, A1 and A2, as new embedded passive acoustic device, low power, and innovative digital hydrophone systems. An important part of the effort is focused on the need for greater dynamic range and the integration on autonomous platforms, such as gliders and profilers. A1 is a standalone small, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and of several soundscape sources

    An embedded passive acoustic device for realtime hydroacoustic surveys

    No full text
    In this paper, we provide a comprehensive description of cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management), which can be deployed both on fixed and mobile platforms. Within this context, we designed and developed two passive acoustic sensors, A1 and A2, as new embedded passive acoustic device, low power, and innovative digital hydrophone systems. An important part of the effort is focused on the need for greater dynamic range and the integration on autonomous platforms, such as gliders and profilers. A1 is a standalone small, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and of several soundscape sources

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    No full text
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented

    NeXOS, developing and evaluating a new generation of in-situ ocean observation systems

    No full text
    Many changes are occurring in the physical, chemistry and biology processes of the ocean. Understanding how these changes are driven is an element of the key environmental descriptors identified by the European Marine Strategy Framework Directive (MSFD) with the ultimate goal being to protect the resource base upon which marine-related economic and social activities depend. The Directive furthers the ecosystem approach to the management of human activities having an impact on the marine environment, integrating the concepts of environmental protection and sustainable use. To meet these goals, in-situ data are necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observations is inherently challenging from the perspective of both time and resources. This paper addresses a new generation of acoustic, optical and fishery in-situ sensors that address these challenges. These sensor systems are multifunctional (single sensor systems addressing several phenomena), can be deployed on a large majority of ocean monitoring systems from surface to the seafloor, and operate for long periods with less maintenance. In addition, at the system and user interface level, the publication of data uses processes and formats conforming to OGC SWE standards and consistent with global ocean observing initiatives and ocean modeling portals such as Copernicus marine environment monitoring services. During the last three years, NeXOS has achieved a number of milestones, providing ten new sensors along with important transverse capabilities for anti-fouling and data management. The optical sensors include monitoring of marine contaminants such as hydrocarbons and components of the carbon cycle. New sensor systems for passive acoustic measurements with extended dynamic range include internal post-processing of acoustic information to reduce communication loads. Two additional sensors (chlorophyll-a and oxygen) have been added to the RECOPESCA system to support an Ecosystem Approach to Fisheries (EAF) for improving measurement of stock-relevant parameters, such as fluorescence (proxy of chlorophyll-a) as well as physical parameters (T, S, Depth) and fish species. Interface with the sensors is through a miniaturized smart sensor interface common to all new NeXOS sensor systems and a PUCK implementation facilitates streamlined platform interfaces. A common toolset for web-enabled and reconfigurable downstream services supports marine databases and data facilitators, from SeaDataNet to GOOS and the Global Earth Observation System of Systems (GEOSS). This paper provides description of sensors and their capabilities along with validation testing.Peer ReviewedPostprint (published version

    NeXOS, developing and evaluating a new generation of in-situ ocean observation systems

    No full text
    Many changes are occurring in the physical, chemistry and biology processes of the ocean. Understanding how these changes are driven is an element of the key environmental descriptors identified by the European Marine Strategy Framework Directive (MSFD) with the ultimate goal being to protect the resource base upon which marine-related economic and social activities depend. The Directive furthers the ecosystem approach to the management of human activities having an impact on the marine environment, integrating the concepts of environmental protection and sustainable use. To meet these goals, in-situ data are necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observations is inherently challenging from the perspective of both time and resources. This paper addresses a new generation of acoustic, optical and fishery in-situ sensors that address these challenges. These sensor systems are multifunctional (single sensor systems addressing several phenomena), can be deployed on a large majority of ocean monitoring systems from surface to the seafloor, and operate for long periods with less maintenance. In addition, at the system and user interface level, the publication of data uses processes and formats conforming to OGC SWE standards and consistent with global ocean observing initiatives and ocean modeling portals such as Copernicus marine environment monitoring services. During the last three years, NeXOS has achieved a number of milestones, providing ten new sensors along with important transverse capabilities for anti-fouling and data management. The optical sensors include monitoring of marine contaminants such as hydrocarbons and components of the carbon cycle. New sensor systems for passive acoustic measurements with extended dynamic range include internal post-processing of acoustic information to reduce communication loads. Two additional sensors (chlorophyll-a and oxygen) have been added to the RECOPESCA system to support an Ecosystem Approach to Fisheries (EAF) for improving measurement of stock-relevant parameters, such as fluorescence (proxy of chlorophyll-a) as well as physical parameters (T, S, Depth) and fish species. Interface with the sensors is through a miniaturized smart sensor interface common to all new NeXOS sensor systems and a PUCK implementation facilitates streamlined platform interfaces. A common toolset for web-enabled and reconfigurable downstream services supports marine databases and data facilitators, from SeaDataNet to GOOS and the Global Earth Observation System of Systems (GEOSS). This paper provides description of sensors and their capabilities along with validation testing.Peer Reviewe
    corecore